

7. Homework 3D crystal system, 3D Bravais lattice, reciprocal lattice

1. The monoclinic crystal system (see Figure below) has following relationships between the lattice constants and corresponding angles: $\boldsymbol{a} \neq \boldsymbol{b} \neq \boldsymbol{c}$ and $=\gamma=\alpha 90^{\circ}$, $\beta \neq 90^{\circ}$. In this lattice, a 2 -fold symmetry axis is parallel and a mirror plane is perpendicular to the crystallographic b axis.
a) Why B-base-centered monoclinic lattice is not a special type of the Bravais lattice in contrast to the A - and C -base-centered Bravais lattices?

b) Why it doesn't make sense to define a base-centered cubic lattice as a special type of the Bravais lattice?
2.

a) Prove that the two base-centered orthorhombic lattices, such as AB, BC or CA (A,B or C-base-centered shown in Figure above), are equivalent to an F-centered orthorhombic lattice.
b) Demonstrate that if $[0,1 / 2,1 / 2]$ and $[1 / 2,0,1 / 2]$ are the coordinates of the lattice points, then $[1 / 2,1 / 2,0]$ is a coordinate of the lattice point as well.
3. The body-centered cubic lattice is described by means of a non-primitive unit cell with the basis vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ or by a primitive unit cell with a triple $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ (see Figure below).

Find a ratio between the volumes of the non-primitive and primitive unit cells.
Define reciprocal lattice vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ for the body-centered cubic lattice.

4. The same task as for exercise 3 to be done for the face-centered cubic lattice (figure below)

Find a ratio between the volumes of the non-primitive and primitive unit cells.
Define reciprocal lattice vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ for the face-centered cubic lattice.

