
3. Homework 3D-lattice, 3D-lattice planes, crystal morphology

1. Calculate the reciprocal basis vectors $\left\{\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}\right\}$ and draw reciprocal lattices for the following real lattices:
a) $\mathrm{a}=\mathrm{b}=\mathrm{c}=3.56 \AA, \alpha=\beta=\gamma=90 \operatorname{deg}$ (Diamond)
b) $\mathrm{a}=7.42 \AA, \mathrm{~b}=5.73 \AA, \mathrm{c}=10.01 \AA, \alpha=\beta=\gamma=90 \operatorname{deg}$ (Potassium Sulphate)
c) $\mathrm{a}=\mathrm{b}=4.9 \AA, \mathrm{c}=5.4 \AA \alpha=\beta=90 \mathrm{deg}, \gamma=120 \mathrm{deg}(\alpha-$ Quartz $)$
2. Find the $\mathrm{d}_{\mathrm{hkl}}$ interplanar distances between the lattice planes $\left(\mathrm{d}_{\mathrm{hkl}}=\frac{1}{\left|\boldsymbol{G}_{\mathrm{hkl}}\right|}, \quad \boldsymbol{G}_{\mathrm{hkl}}\right.$ is a reciprocal lattice vector) having following Miller indices in Diamond und α-Quartz crystal (see exercise 1):
a) (100)
b) (120)
c) (112)
3. Calculate the angles between given two crystal planes $\left(\cos (\alpha)=\frac{\boldsymbol{G}_{\mathrm{h} 1 \mathrm{k} 11} \circ \boldsymbol{G}_{\mathrm{h} 2 \mathrm{k} 212}}{\left|G_{\mathrm{h} 1 \mathrm{k} 111} \cdot\right| \cdot G_{\mathrm{h} 2 \mathrm{k} 212} \mid}\right)$
for Diamond and α-Quartz crystals:
a) (100) and (010)
b) (100) and (101)
c) (101) and (011)
