

Crystallography

I. Homework "2D crystal lattice"

Define a crystal lattice, what do you need for its description?

1. Depict the lattice, which has the following lattice constants:

a) a = 1: b = 1; $\alpha = 90^{\circ}$; b) a = 1; $b = \sqrt{2}$; $\alpha = 45^{\circ}$; c) a = 1; $b = \sqrt{5}$; $\alpha = 22.5^{\circ}$.

2. Describe the lattice with the following lattice constants:

a)
$$a = 1$$
, $b = 1$, $\alpha = 60^{\circ}$;
b) $a = 1$, $b = 1$, $\alpha = 120^{\circ}$.

- 3. The basis vectors of a lattice are given by *a* and *b*. Prove that each pair of lattice vectors {**a**, *k***a**+**b**} (*k* is integer) are the basis vectors of the same lattice too.
- 4. The atomic positions \mathbf{R} , within the elementary cell are described by two components x and y, so $\mathbf{R}=x\mathbf{a}+y\mathbf{b}$ (0<=x<1, 0<=y<1), where \mathbf{a} and \mathbf{b} are the basis vectors. Depict and distinguish a difference between the crystals consisting of two atoms with the coordinates [1/3, 1/3] and [2/3, 2/3]. Lattice constants are
 - a) $a = 1, b = 1, \alpha = 60^{\circ};$
 - b) $a = 1, b = 1, \alpha = 120^{\circ};$
 - c) $a = 1, b = 1, \alpha = 90^{\circ}$.