Crystallography

I. Homework "2D crystal lattice"

Define a crystal lattice, what do you need for its description?

1. Depict the lattice, which has the following lattice constants:
a) $\mathrm{a}=1: \mathrm{b}=1 ; \alpha=90^{\circ}$;
b) $\mathrm{a}=1 ; \mathrm{b}=\sqrt{ } 2 ; \alpha=45^{\circ}$;
c) $\mathrm{a}=1 ; \mathrm{b}=\sqrt{ } 5 ; \alpha=22.5^{\circ}$.
2. Describe the lattice with the following lattice constants:
a) $\mathrm{a}=1, \mathrm{~b}=1, \alpha=60^{\circ}$;
b) $\mathrm{a}=1, \mathrm{~b}=1, \alpha=120^{\circ}$.
3. The basis vectors of a lattice are given by \boldsymbol{a} and \boldsymbol{b}. Prove that each pair of lattice vectors $\{\mathbf{a}, k \mathbf{a}+\mathbf{b}\}$ (k is integer) are the basis vectors of the same lattice too.
4. The atomic positions \boldsymbol{R}, within the elementary cell are described by two components x and y, so $\boldsymbol{R}=\mathrm{x} \boldsymbol{a}+\mathrm{y} \boldsymbol{b}(0<=x<1,0<=y<1)$, where \boldsymbol{a} and \boldsymbol{b} are the basis vectors. Depict and distinguish a difference between the crystals consisting of two atoms with the coordinates $[1 / 3,1 / 3]$ and $[2 / 3,2 / 3]$. Lattice constants are
a) $\mathrm{a}=1, \mathrm{~b}=1, \alpha=60^{\circ}$;
b) $\mathrm{a}=1, \mathrm{~b}=1, \alpha=120^{\circ}$;
c) $\mathrm{a}=1, \mathrm{~b}=1, \alpha=90^{\circ}$.
